Dating precariously balanced rocks in seismically active parts of California and Nevada

John W. Bell Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557
James N. Brune Seismological Laboratory, University of Nevada, Reno, Nevada 89557
Tanzhuo Liu Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964
Marek Zreda Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona 85721
James C. Yount Global Change and Climate History Team, U.S. Geological Survey, Reno, Nevada 89557

ABSTRACT
Precariously balanced boulders that could be knocked down by strong earthquake ground motion are found in some seismically active areas of southern California and Nevada. In this study we used two independent surface-exposure dating techniques—rock-varnish microlamination and cosmogenic 36Cl dating methodologies—to estimate minimum- and maximum-limiting ages, respectively, of the precarious boulders and by inference the elapsed time since the sites were shaken down. The results of the exposure dating indicate that all of the precarious rocks are >10.5 ka and that some may be significantly older. At Victorville and Jacumba, California, these results show that the precarious rocks have not been knocked down for at least 10.5 k.y., a conclusion in apparent conflict with some commonly used probabilistic seismic hazard maps. At Yucca Mountain, Nevada, the ages of the precarious rocks are >10.5 to >27.0 ka, providing an independent measure of the minimum time elapsed since faulting occurred on the Solitaire Canyon fault.

INTRODUCTION
Purpose and Scope
Balanced rocks, variously referred to as loganstones, logging stones, balancing rocks, and perched boulders (Twidale, 1982), are reported in the literature dating back to the 18th century (Hassenfratz, 1791). In reconnaissance-level searches of bedrock terrain in California and Nevada, one of us (Brune) found balanced rocks in many types of lithologies where they evidently evolved by natural processes. Brune (1996) described rocks that could be overturned by relatively little horizontal force as “precarious,” and he proposed that such rocks could effectively serve as low-resolution seismoscopes that operated over long periods of geologic time. Numerical modeling and dynamic field testing by Shi et al. (1996) and Brune (1996) indicated that precarious rocks could be toppled by accelerations of about 0.2–0.3 g.

We are unaware of any previous efforts to numerically date precarious rocks in seismically active areas. Brune and Whitney (1992) and Brune (1996) speculated that the rocks were on the order of thousands of years old on the basis of dark rock-varnish coatings. New surface-exposure dating methodologies now provide an opportunity to estimate the ages of the rocks. Here we utilize two independent dating applications—rock-varnish microlamination layering and cosmogenic 36Cl dating—to estimate numerical ages for precarious boulders at three localities (Fig. 1): the granitic hills and pediments near Victorville and Jacumba, California, and the volcanic tuff cliff rocks at Yucca Mountain, southern Nevada.

METHODOLOGY
Geomorphic Model
A geomorphic model that accounts for the natural evolution of the precarious boulders is essential for confidently interpreting dating results (Nishiizumi et al., 1993). At Victorville and Jacumba, the precarious rocks are found among thousands of spheroidal granitic boulders derived from exhumed Mesozoic plutons (Oberlander, 1972). Through a classical two-stage, fracture-controlled weathering process (Twidale, 1982; Fig. 2), granitic corestones are left stacked in quasi-stable positions as the loose weathered granite is eroded. At Yucca Mountain, similar fracture-controlled processes have produced precarious blocks and columnar stacks of volcanic tuff on weathered cliff faces.

The balanced rocks we sampled for dating consisted of paired sets in which a precarious boulder was perched on top of a more stable pedestal. In each case, we visually examined the precarious rock, the pedestal, and the basal rocking surfaces for weathering-rind and rock-varnish characteristics that would confirm both relative age and long-term unstable geometry of the set.

Rock Varnish
Rock varnish is a ubiquitous, dark, Fe- and Mn-rich coating as thick as 200 µm that accretes on subsaerial rock exposures in arid and semiarid environments. The varnish is composed of two component layers, a Mn-rich coating that may be as thick as 200 µm and a Mn-poor outer layer that is only a few microns thick. New varnish will accrete on the outer surface of the Mn-rich coating and is deposited episodically by seasonal wetting of cracks formed by thermal stress, but only as long as the rock remains in a stable position. When the rock is overthrown, new varnish stops accreting on the Mn-rich coating, but continues to accrete on the Mn-poor outer layer. The Mn-rich coating is thought to accrete at a rate of 10 µm/k.y. (Brune, 1996). The Mn-poor outer layer is considered to be a stable marker layer and is used to date the time of last overthrusting of the rock.

Data Repository item 9857 contains additional material related to this article.
environments. Several techniques are available for surface-exposure dating by rock-varnish methodologies (cf. Oberlander, 1994). In this study we used the experimental varnish microlamination dating methodology (Dorn, 1990; Liu, 1994; Cremaschi, 1996; Liu and Dorn, 1996). This methodology is based on the earlier findings by Perry and Adams (1978) that rock varnish consists of alternating Mn-rich and Fe-rich (Mn-poor) microlaminations that appear to record paleoclimatic signals; black Mn-rich and yellowish-orange Mn-poor layers are correlated, respectively, with oscillating episodes of humid (low alkalinity) and arid (high alkalinity) climatic conditions (Dorn, 1990; Jones, 1991).

Rock-varnish samples were collected from multiple locations on the vertical faces of the precarious-pedestal rock sets. Ultra-thin (<5–10 µm) polished sections of the varnish were examined using a conventional transmitted light microscope at magnifications of 400–1200x. The microlamination sequences were interpreted on the basis of the layering unit (LU) results of Liu and Dorn (1996; Fig. 3); i.e., major black layers are correlated with pulses of climatic cooling and wetness. The uppermost layer of all rock varnish (LU-1) is universally Mn poor, reflecting the dry, alkaline conditions of the Holocene. Pre-Holocene varnishes are characterized by one or more black, Mn-rich layers reflecting more humid climates. The first major black layer encountered below LU-1 is correlated with the Younger Dryas climatic event (10.5 ka) on the basis of global evidence (cf. Broecker, 1994) and on the basis of paleoclimatic evidence for a Younger Dryas event in the southern Great Basin (Quade et al., 1998). Successively lower black layers are correlated with Heinrich events H1 (14.5 ka), H2 (21.0 ka), H3 (27.0 ka), and H4 (35.0 ka).

Cosmogenic ^{36}Cl

The accumulation of cosmogenic ^{36}Cl in rocks exposed to cosmic radiation at the ground surface can be used to calculate the surface-exposure age of the rocks (Phillips et al., 1986). Cosmogenic nuclide accumulation is a function of exposure time, geographic and altitudinal location, and abundance of target elements. By measuring the isotopic composition of the host rock, and by applying a predetermined production rate, the apparent surface-exposure age of the rock can be calculated.

In this study we collected samples at Victorville and Jacumba from some of the same rock faces sampled for rock varnish. Two additional samples were collected from unvarnished rocks at Campo and Banning (Fig. 1). Major element and isotopic ^{36}Cl analyses were determined according to procedures described by Zreda et al. (1991). We used the production rates at sea level and high latitudes reported by Phillips et al. (1996) and scaled them to our sample locations. Erosion-corrected surface ages were calculated using the approach of Phillips and Plummer (1996). The effects of topographic shielding on production rates were estimated using the integral from Zreda and Phillips (1994a).

RESULTS AND DISCUSSION

We analyzed 24 rock-varnish samples from the Victorville and Jacumba rock sites, and 10 samples from Yucca Mountain. Rock-varnish layering unit ages were estimated for each sample (Table 1); detailed descriptions of layering sequences are in the GSA Data Repository.¹

Our results show that the uppermost microlamination in all samples is the yellowish-orange, Mn-poor Holocene layer LU-1. At least one major black layer was found beneath this uppermost layer in all but one of the varnish samples. The first-encountered black laminations are correlated with LU-2, and successively lower black layers are correlated with LU-4. The presence of a major, black, Mn-rich microlamination below the upper Holocene layer thus indicates that the varnish has undergone at least one wet climatic cycle. If this first black layer represents the Younger Dryas event, then all of the precarious rocks examined in this study are at least 10.5 ka.

We interpret the rock-varnish ages to be minimum because of the lag time in varnish accretion and the poly cyclic nature of the weathered rock faces. The ages of the Victorville rocks range from >10.5 ka to >21.0 ka (Table 1), and several rocks are between >10.5 ka and <14.5 ka on the basis of the presence of a single black layer and a

¹Data Repository item 9857, varnish microlamination descriptions and analyses of ultra-thin sections, is available on request from Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301. E-mail: editing@geosociety.org.
basal orange layer (Fig. 4A). The microlamination ages of the two Jacumba precarious rock sets are similar, ranging from >10.5 ka to >21.0 ka. Minimum rock-varnish ages of Yucca Mountain rocks are largely between >10.5 ka and <14.5 ka, although some rocks may be >21.0 to >27.0 ka on the basis of the presence of LU-4.

Cosmogenic 36Cl ages were determined for seven precarious rock sets in southern California (Table 2). The rocks range in apparent age from 15 to 72 ka, depending on the assumed erosion rate (ε) of the rock face. Thick weathering rinds and dark varnish on the rocks suggest that surface erosion has been negligible, and the $\varepsilon = 0$ rate is assumed to best approximate the actual cosmogenic ages. The 36Cl ages are interpreted as maxima because of the uncertainties associated with the burial and exhumation histories of the rocks (Zreda and Phillips, 1994b).

Four rocks at Victorville and Jacumba were dated by both rock-varnish and 36Cl methodologies (Table 1). The rock R3 (Fig. 5A) yielded a 36Cl ($\varepsilon = 0$) age of 15.0 ka, an age in reasonably close agreement with the rock-varnish ages between >10.5 and <14.5 ka. The precarious rock face from Steve Day #2 (Fig. 5B) provided similar 36Cl (23.6 ka) and rock-varnish (>21.0 ka) ages. The 36Cl ages for Skyline #2 and Rich II are substantially older than the respective rock-varnish ages, a difference possibly related to either pre-varnish spalling of the rock face or to inherited 36Cl.

CONCLUSIONS AND IMPLICATIONS FOR SEISMIC HAZARD STUDIES

On the basis of rock-varnish and cosmogenic 36Cl dating, we conclude that the precarious rocks have been exposed for at least 10.5 k.y., a minimum exposure age qualitatively supported by the thick, polycyclic weathering rinds and dark rock-varnish coatings found on the rock surfaces. The results further indicate that the precarious rocks at Victorville and Jacumba have not been subjected to earthquake ground accelerations greater than 0.2–0.3 g in more than 10.5 k.y., possibly longer if the older varnish and 36Cl ages are close to the actual ages. The Victorville site is located between the active San Andreas (35 km west) and Helen- dale (15 km east) faults, and the Jacumba site is located about 18 km from the southern end of the
Elsinore fault (Fig. 1). Brune (1996) noted that the presence of precarious rocks in these areas appears to conflict with probabilistic seismic hazard maps that show >0.5 g at these sites for time periods of 1–5 k.y. (cf. Working Group on California Earthquake Probabilities 95, 1995), and he suggested that the rocks illustrate that the hazard in some parts of southern California is not as high as predicted by these seismic hazard models.

At Yucca Mountain, the precarious balanced rocks lie on the footwall of the late Quaternary Solitario Canyon fault, which bounds the west margin of the proposed high-level nuclear waste repository (Fig. 1), and they provide an independent constraint on the recent strong ground motion at the site. The rock-varnish exposure ages of these rocks suggest that large earthquakes have not occurred on the Solitario Canyon fault for >10.5 to >27.0 k.y., an elapsed time consistent with the paleoseismic history of the fault. Ramelli et al. (1996) concluded that the most recent faulting event on the Solitario Canyon fault occurred between 20 and 30 ka.

The preliminary results of this study demonstrate that the surface-exposure ages of precarious balanced rocks can be successfully used to estimate the elapsed time since strong ground motion occurred at the rock sites. In contrast to paleoseismic trenching studies, which only pinpoint sites of fault rupture, precarious boulders may provide direct, far-field evidence of earthquake occurrence. If the evolutionary history of a precarious rock can be established using a viable geomorphic model and demonstrable evidence of long-term precarious geometry, surface-exposure dating has the potential to provide a new paleoseismic tool for use in characterization of regional seismic hazard.

ACKNOWLEDGMENTS
We thank Ronald I. Dorn for assistance with the rock-varnish dating. This study was supported by U.S. Geological Survey National Earthquake Hazards Reduction Contract 1434-94-G-2485.

REFERENCES CITED

Manuscript received December 5, 1997
Revised manuscript received March 11, 1998
Manuscript accepted March 20, 1998

TABLE 2. RESULTS OF 36Cl ANALYSES

<table>
<thead>
<tr>
<th>Boulder</th>
<th>Latitude ('N)</th>
<th>Longitude ('W)</th>
<th>Elevation (m)</th>
<th>36Cl (ppm)*</th>
<th>36Cl/10^4Cl</th>
<th>Boulder age (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R³</td>
<td>34.5825</td>
<td>117.3156</td>
<td>930</td>
<td>14</td>
<td>700 ± 30</td>
<td>15.0</td>
</tr>
<tr>
<td>Split Rock</td>
<td>34.5528</td>
<td>117.2840</td>
<td>853</td>
<td>11</td>
<td>1660 ± 160</td>
<td>57.8</td>
</tr>
<tr>
<td>Skyline #2</td>
<td>34.5489</td>
<td>117.2051</td>
<td>811</td>
<td>7</td>
<td>2220 ± 40</td>
<td>49.2</td>
</tr>
<tr>
<td>Rich II</td>
<td>34.5555</td>
<td>117.2711</td>
<td>951</td>
<td>14</td>
<td>1250 ± 60</td>
<td>61.0</td>
</tr>
<tr>
<td>Steve Day #2</td>
<td>32.6611</td>
<td>116.2056</td>
<td>853</td>
<td>6</td>
<td>1220 ± 40</td>
<td>23.6</td>
</tr>
<tr>
<td>Campo</td>
<td>32.6278</td>
<td>116.4417</td>
<td>829</td>
<td>35</td>
<td>270 ± 50</td>
<td>34.0</td>
</tr>
<tr>
<td>Banning</td>
<td>33.8519</td>
<td>116.8285</td>
<td>1341</td>
<td>21</td>
<td>290 ± 20</td>
<td>13.0</td>
</tr>
</tbody>
</table>

*36Cl concentrations rounded to nearest 1 ppm.
1 Boulder ages rounded to nearest 0.1 ka and reported for two boulder surface erosion rates (ε). Combined analytical and production rate errors in ages estimated at 15% – 20%.