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The GPS velocities were compiled specifically for this study. Of the total 
2,846 velocities used in the model, 1,197 were derived by the authors, and 
1,649 were taken from (mostly) published results. The velocities derived by 
the authors (the “UNR solution”) were estimated from GPS position 
time-series of continuous and semi-continuous stations for which data are 
publicly available. We estimated ITRF2005 positions from 2002 to 2011.5 
using JPL's GIPSY-OASIS II software with ambiguity resolution applied 
using our custom Ambizap software. Only stations with time-series that 
span at least 2.25 years were considered. We removed from the time-series 
continental-scale common-mode errors using a spatially-varying filtering 
technique. Velocity uncertainties (typically 0.1–0.3 mm/yr) assume that the 
time-series contain flicker plus white noise. We used a subset of stations on 
the stable parts of the Pacific and North American plates (far from the plate 
boundaries) to estimate the Pacific–North American pole of rotation. This 
pole is applied as a boundary condition to the model, and the North 
American–ITRF2005 pole was used to rotate our velocities into a North 
America-fixed reference frame. We did not include parts of the time-series 
that show curvature due to post-seismic deformation after major 

earthquakes and we also excluded stations whose time-series display a 
significant unexplained non-linearity or that are near volcanic centers. 
Transient effects longer than the observation period (i.e., slow viscoelastic 
relaxation) were left in the data.
 We added to the UNR solution velocities from published studies 
(Chang et al., 2006; Freymueller et al., 1999; Hammond and Thatcher, 
2004, 2005, 2007; Lyons et al., 2002; Payne et al., 2008, 2012; Poland et 
al., 2006; Shen et al., 2011; Spinler et al., 2010; Svarc et al., 2002; Titus et 
al., 2011; Williams et al., 2006) and those from an unpublished study for 
Arizona. The velocities were transformed onto the UNR solution's reference 
frame by estimating and applying a translation and rotation that minimizes 
velocity differences at collocated stations. We removed obvious outliers and 
velocities in areas that we identified to undergo subsidence likely due to 
excessive water pumping (e.g., California's Great Valley). All velocities used 
in the model are shown on map (velocities less than 4.5 mm/yr are satu-
rated such that the vector head is shown irrespective of rate). More details 
can be found in Kreemer et al. (2012).
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This map presents a model of crustal strain rates derived from Global Positioning System (GPS) measurements 
of horizontal station velocities. The model indicates the spatial distribution of deformation rates within the Pacific 
–North America plate boundary from the San Andreas fault system in the west to the Basin and Range province 
in the east. As these strain rates are derived from data spanning the last two decades, the model reflects a best 
estimate of present-day deformation. However, because rapid transient effects associated with earthquakes 
(i.e., postseismic deformation resulting in curvature of the GPS time-series) have been removed from the GPS 
data, these strain rates can be considered representative of the long-term, steady-state, deformation associated 
with the accumulation of strain along faults. This model is useful for both seismic-hazard and geodynamic 
studies to understand the activity rates of (known and unknown) faults and the plate tectonic boundary and 
buoyancy forces that cause the deformation, respectively. In more slowly deforming areas we expect fewer, 
smaller earthquakes and infrequent large earthquakes will have a much longer recurrence time compared to 
those in rapidly deforming areas.

For the strain rate calculations, we excluded GPS stations with anomalous 
vertical motion or annual horizontal periodicity, which are indicators of local 
site instability. First, we used the stations from the UNR solution to create a 
Delaunay triangulation and estimated the horizontal strain rate components 
(and rigid body rotation) for each triangle in a linear least-squares inversion 
using the horizontal velocities as input. Some level of spatial damping was 
applied to minimize unnecessary spatial variation in the model parameters. 
The strain rates estimates were then used as a priori strain rate variances in 

a method that fits continuous bi-cubic Bessel spline functions through the 
velocity gradient field while minimizing the weighted misfit to all velocities 
(Beavan and Haines, 2001; Haines and Holt, 1993).  A minimal level of 
spatial smoothing of the variances was applied. The strain rate tensor model 
is shown on the main map as contours of the second invariant of the tensor, 
which is a measure of the amplitude that is coordinate-frame independent. 
Faults with known slip rates (Haller et al., 2002) are shown on top of strain 
rates contours. More details can be found in Kreemer et al.  (2012)
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Signal-to-noise (SNR) ratio is defined as the ratio of second invariant of the strain rate 
over the a posteriori standard deviation. These values are strongly affected by the GPS 
station density and the precision of velocities. Everywhere where SNR<1, the area could 
be considered rigid, within one standard deviation. Conversely, for areas that appear 
nearly rigid and where SNR<1 (e.g., Arizona, eastern Nevada) strain rates may be much 
more localized (i.e., higher) than the model suggests. Results are clipped at coast.

-120° -110°

36°

40° 40°

44° 44°

-110°

36°

32°

-120°

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

Normalized Root-Mean-Square

Contour map of the normalized root-mean-square misfit between observed and calcu-
lated velocities. For all blue colored areas the data are fit within two standard deviations. 
Note the large misfit along the central San Andreas fault where the fault creeps and where 
the model can not accurately fit a step function in the velocity field.  Results are clipped 
at coast.
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Contour map of the amplitude of interpolated velocities relative to North America. 
Results are clipped at coast.
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The negative value for California indicates shrinking, not growing.
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	12F10_map_lighter

